Influence of the chemical composition on the machinability of brasses

نویسندگان

  • C. Vilarinho
  • D. Soares
  • F. Castro
چکیده

Although brasses are essentially copper and zinc alloys, they also contain other alloying elements such as lead, silicon, aluminium, iron, tin, manganese, nickel or arsenic whose presence and content are responsible for the wide variety of properties inherent to these materials. In this article, the effect of the chemical composition of brasses, considering each alloying element and the effective copper content, upon the machinability has been investigated. For that purpose, machinability tests have been carried out on a CNC lathe under lubricated conditions. The study includes both commercial alloys and samples prepared in laboratory. The experimental procedure consists on turning operations, during which cutting forces and surface roughness obtained in brass workpieces are measured. The chip class is accordingly evaluated. The statistic treatment of the results enables the establishment of correlations between the studied machinability parameters and the chemical composition of different kinds of brasses. © 2005 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect OF SI and AL on the Microstructure, Mechanical Properties and Machinability of 65CU-35ZN Brass

Relations between the microstructure, mechanical properties and machinability of as-cast 65Cu-35Zn brass with various amounts of Al from 0 to 4.72 and Si from 0 to 3.62 wt% were investigated. Both Si and Al initially enhanced the UTS and toughness of the brass samples, which led to improvement in machinability due to a reduction in the main cutting force. A duplex brass with random oriented α p...

متن کامل

Influence of microwave treatment on surface roughness, hydrophobicity, and chemical composition of galena

The influence of microwave treatment on the surface roughness, hydrophobicity, and chemical composition of galena was studied. The pure galena specimens and purified galena concentrate were used in this work. A conventional multi-modal oven (with a frequency of 2.45 GHz and a maximum power of 900 W) was used to conduct the experiments. The results obtained from the atomic-force microscopy analy...

متن کامل

Evaluation of Tool Performance With Nanocrystalline Multilayer Coatings on the Machinability of Superalloy Inconel 718

In this paper, the performance of the cutting tool with nanocrystalline multilayer coatings (TiN+TiAlN) for machining of superalloy Inconel 718 in the dry and wet conditions was studied. The multi layer TiN and TiAlN with nanocrystalline structure was applied by physical vapor deposition technique (arc evaporation) on the WC-Co inserts. The results of the ball on disc wear test and the machinin...

متن کامل

Influence of Composition and Austempering Temperature on Machinability of Austempered Ductile Iron

Present investigations involve a systematic study on the machinability of austempered ductile irons (ADI) developed from four commercially viable ductile irons alloyed with different contents of 0, 0.1, 0.3 and 0.6 wt.% of Ni. The influence of Ni content, amount of retained austenite and hardness of ADI on machining behavior has been conducted systematically. Austempering heat treatment was car...

متن کامل

Survey and Study of Machinability for Titanium Alloy Ti-6Al-4V through Chip Formation in Milling Process

Most of the materials used in the industry of aero-engine components generally consist of titanium alloys. Advanced materials, because of their excellent combination of high specific strength, light weight and general corrosion resistance. In fact, chemical wear resistance of aero-engine alloy provides a serious challenge for cutting tool material during the machining process. The reduction in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005